Representative Works


We welcome your comments and suggestions on our work, and please send your request to Prof. Tang via yxtang@fzu.edu.cn, if you need a copy of the following publications. (Remark: * Corresponding author, + Co-first author)


31.Zou, W.; Zhang, J.; Liu, M.; Li, J.; Ren, Z.; Zhao, W.; Zhang, Y.; Shen, Y. and Tang, Y.*,  Anion-Reinforced Solvating Ionic Liquid Electrolytes Enabling Stable High-Nickel Cathode in Lithium Metal BatteriesAdv. Mater. 2024, 36, 2400537.

C1E1D


30.Wang, H.; Liu, Y.; Zhu, M.; Chen, Y.; Chen, D.; Lin, Z.; Wang, K.; Xu, Z.; Chen, S.; Xing, G.; Malyi,  O.  I.; Tang, Y.* and Zhang, Y*, Emulating “Curvature-Enhanced Adsorbate Coverage” for Superconformal and Orientated Zn Electrodeposition in Zinc-ion-Batteries. Angew. Chem. Int. Ed. 2024, e202414473.


29.Zhu, M.; Wang, H.; Wang, H.; Li, C.; Chen, D.; Wang, K.; Bai, Z.; Chen, S.; Zhang, Y. and Tang, Y.*, A Fluorinated Solid-state-electrolyte Interface Layer Guiding Fast Zinc-ion Oriented Deposition in Aqueous Zinc-ion Batteries. Angew. Chem. Int. Ed. 2024, 136, e202316904.



28. Wang, H; Li, H; Tang, Y.* ; et al., Stabilizing Zn anode interface by simultaneously manipulating the thermodynamics of Zn nucleation and overpotential of hydrogen evolution. Adv. Funct. Mater. 2022, 2207898.




27. Zhou, P.; Liu, D.; Chen, Y.; Chen, M.; Liu, Y.; Chen, S.; Kwok, C. T.; Tang, Y.*; Wang S.* and Pan H.*, Anodized steel: the most promising bifunctional electrocatalyst for alkaline water electrolysis in industry. Adv. Funct. Mater. 2022, 2202068.



26. Zhao, J.; Cong, Z.; Hu, J.; Lu, H.; Wang, L.; Wang, H.; Malyi, O. I.; Pu, X.*; Zhang, Y.; Shao, H.; Tang, Y.* and Wang, Z.*, Regulating zinc electroplating chemistry to achieve high energy coaxial fiber Zn ion supercapacitor for self-powered textile-based monitoring system. Nano Energy 2022, 106863.      



25. Wang, H.; Ning, D.; Wang, L.; Li, H.; Li, Q.; Ge, M.; Zou, J.; Chen, S.; Shao, H.; Lai, Y.; Zhang, Y.; Xing, G.*; Pang, W.* and Tang, Y.*, In operando neutron scattering multiple-Scale studies of lithium-ion batteries. Small 2022, 2107491. (Invited paper)      

24. Wang, L.; Zhong, Y.; Wen, Z.; Li, C.; Zhao, J.; Ge, M.; Zhou, P.; Zhang, Y.; Tang, Y.* and Hong, G.,  A strong Lewis acid inducing highly ionic conductive and interfacial stable polymer composite electrolytes towards all solid-state Li metal batteries. Sci. China Mater. 2022, 2179-2188. (Invited paper)


8FEA2



23. Zhao, J.+; Lu, H.+; Zhang, Y.+; Yu, S.+; Malyi, O.I.; Zhao, X.; Wang, L.; Wang,  H.; Peng, J.*; Li, X.; Zhang, Y.; Chen, S.; Pan, H.; Xing, G.; Lu, C.; Tang, Y.*; Chen, X.*, Direct coherent multi-ink printing of fabric supercapacitors. Sci. Adv. 2021, 7, eabd6978.



22. Chen, M.+; Zhang, Y.+; Xing, G.; Chou, S.; Tang, Y.*; Electrochemical energy storage devices working in extreme conditions. Energy Environ. Sci. 2021,14, 3323-3351.



21. Chen, M.; Xiao, Jin.; Hua, W.; Hu, Z.; Wang, W.; Gu, Q.; Tang, Y.*; Chou, S.*; Liu, H.; Dou, S., A cation and anion dual doping strategy for the elevation of titanium redox potential for high-power sodium-ion batteries. Angew. Chem. Int. Ed. 2020, 59, 12076-12083.



20. Cao, C.Liang, F.Zhang, W.Liu, H.Liu, H.*Zhang, H.Mao, J.Zhang, Y.Feng, Y.Yao, X.Ge, M.*Tang, Y.*Commercialization-Driven Electrodes Design for Lithium Batteries: Basic Guidance, Opportunities, and PerspectivesSmall 2021, 2102233.


19. Li, H.; Wang, H.; Xu, Z.; Wang, K.; Ge, M.; Zhang, Y.; Tang, Y.*, Chen, S.*; Thermal-Responsive and Fire-Resistant Materials for High-Safety Lithium-Ion Batteries. Small 2021, 202103679.



18. Chen, M.; Liu, Q.; Hu, Z.; Zhang, Y.; Xing, G.; Tang, Y.*; Chou, S.*, Designing advanced vanadium-based materials to achieve electrochemically active multielectron reactions in Sodium/Potassium-ion Batteries. Adv. Energy Mater. 2020, 2002244.


17. Guo, Q.; Mao, J.; Huang, J.; Wang, Z.; Zhang, Y.; Hu, J.; Dong, J.;  SathasivamS.;  Zhao, Y.;  Xing, G.; Pan, H.; Lai, Y.*; Tang, Y.*, Reducing oxygen evolution reaction overpotential in cobalt-based electrocatalysts via optimizing the “microparticles-in-spider web” electrode configurations. Small 2020, 190702.




16. Ge, M.; Cao, C.; Liang, F.; Liu, R.;Zhang, Y.; Zhang, W.*; Zhu, T.; Yi, B.; Tang, Y.*; Lai, Y.*, A “PDMS-in-water” emulsion enables mechanochemically robust superhydrophobic surfaces with self-healing nature. Nano. Horiz. 2020, 5, 65-73.

15. Ge, M.; Tang, Y.*; Malyi, O,I.; Zhang, Y.; Zhu, Z.; Lv, Z.; Ge, X.; Xia, H.; Huang, Ji.; Lai, Y.*; Chen, X.*, Mechanically reinforced localized structure design to stabilize solid–electrolyte interface of the composited electrode of Si nanoparticles and TiOnanotubes. Small 2020, 200209.



14. Zhang, Y.; Tang, Y.*; Deng, J.; Li, W.; Xia, H.; Zhu, Z.; Lu, Z.; Wei, J.; Li, W.; Persson, C.; Malyi, O.*; Antonietti, M.; Chen, X.*, Correlating the peukert’s constant with phase composition of electrode materials in fast lithiation processes. ACS Materials Lett. 2019, 1, 5, 519-525.



13. Tang, Y.Zhang, Y.; Malyi, O. I.; Bucher, N.; Xia, H.; Xi, S.; Zhu, Z.; Lv, Z.; Li, W.; Wei, J.; Srinivasan, M.; Borgna, A.; Antonietti, M.; Du, Y.*; Chen, X.*, Identifying the origin and contribution of surface storage in TiO2(B) nanotube electrode by in situ dynamic valence state monitoring. Adv. Mater. 2018, 30, 1802200.


        12. Ge, M.; Cao, C.; Huang, J.; Zhang, X.; Tang, Y.*;  Zhou, X.; Zhang, K.; Chen, Z.*; Lai, Y.*, Rational design of materials interface at nanoscale towards intelligent oil–water separation. Nanoscale Horiz. 2018, 3 , 235-260.

 

85794


    

        11. Tang, Y.; Deng, J.; Li, W.; Malyi, O. I.; Zhang, Y.; Zhou, X.; Pan, S.; Wei, J.; Cai, Y.; Chen, Z.; Chen, X.*, Water-Soluble sericin protein enabling stable solid-electrolyte interphase for fast charging high voltage battery electrode. Adv. Mater. 2017, 29, 1701828.


10Tang, Y.; Zhang, Y.; Rui, X.; Qi, D.; Luo, Y.; Leow, W. R.; Chen, S.; Guo, J.; Wei, J.; Li, W.; Deng, J.; Lai, Y.; Ma, B.; Chen, X.*, Conductive inks based on a lithium titanate nanotube gel for high-rate lithium-ion batteries with customized configuration. Adv. Mater. 2016, 28, 1567-1576.


9. Zhang, Y.+; Rui, X.+; Tang, Y.+;  Liu, Y.; Wei, J.; Chen, S.; Leow, W. R.; Li, W.; Liu, Y.; Deng, J.; Ma, B.; Yan, Q.*; Chen, X.*, Wet-Chemical processing of phosphorus composite nanosheets for high-rate and high-capacity lithium-ion batteries. Adv. Energy Mater. 2016, 6, 1502409.


8. Rui, X.+; Tang, Y.+; Malyi, O. I.+; Gusak, A.; Zhang, Y.; Niu, Z.; Tan, H. T.; Persson, C.; Chen, X.; Chen, Z.*, Ambient dissolution-recrystallization towards large-scale preparation of V2Onanobelts for high-energy battery applications. Nano Energy 2016, 22, 583–593.


7. Zhang, Y.+; Wu, B.+; Tang, Y.+; Qi, D.; Wang, N.; Wang, X.; Ma, X.; Sum, T. C.; Chen, X.*, Prolonged Electron lifetime in ordered TiOmesophyll cell‐like microspheres for efficient photocatalytic water reduction and oxidation. Small 2016,  2291-2299.


6. Tang, Y.; Zhang, Y.; Li, W.; Ma, B.; Chen, X.*, Rational material design for ultrafast rechargeable lithium-ion batteries. Chem. Soc. Rev. 2015, 44, 5926-5940.


5. Tang, Y.; Zhang, Y.; Deng, J.; Qi, D.; Leow, W. R.; Wei, J.; Yin, S.; Dong, Z.; Yazami, R.; Chen, Z.*; Chen, X.*, Unravelling the correlation between the aspect ratio of nanotubular structures and their electrochemical performance to achieve high-rate and long-life lithium-ion Batteries. Angew. Chem. Int. Ed. 2014, 53, 13488–13492.


4. Tang, Y.; Zhang, Y.; Deng, J.; Wei, J.; Tam, H. L.; Chandran, B. K.; Dong, Z.; Chen, Z.; Chen, X.*, Mechanical force-driven growth of elongated bending TiO2-based nanotubular materials for ultrafast rechargeable lithium ion batteries. Adv. Mater. 2014, 26, 6111-6118.


3. Tang, Y.; Jiang, Z.; Xing, G.; Li, A.; Kanhere, P. D.; Zhang, Y.; Sum, T. C.*; Li, S.*; Chen, X.; Dong, Z.*, Chen, Z.*;Efficient Ag@ AgCl cubic cage photocatalysts profit from ultrafast plasmon‐induced electron transfer processes. Adv. Funct. Mater. 2013, 23, 2932-2940.


2. Jiang, Z.; Tang, Y.*; Tay, Q.; Zhang, Y.; Malyi, O. I.; Wang, D.; Deng, J.; Lai, Y.; Zhou, H.; Chen, X.; Dong, Z.; Chen, Z.*, Understanding the role of nanostructures for efficient hydrogen generation on immobilized photocatalysts. Adv. Energy Mater. 2013, 3, 1368-1380.


1. Zhang, Y.+; Tang, Y.+; Liu, X.; Dong, Z.; Hng, H. H.; Chen, Z.; Sum, T. C.; Chen, X.*, Three-dimensional CdS–Titanate composite nanomaterials for enhanced visible-light-driven hydrogen evolution. Small 2013, 996-1002.